
SJJ Embedded Micro Solutions Rev 1.2

Copyright © 2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
04/14/10 1

COM Port Changes in .NET Micro Framework
4.0
Author:
Mr. John R. Malin

Microsoft Embedded MVP
Principal Embedded Developer, SJJ Embedded Micro Solutions, LLC

Date:
April 14, 2010

Applies to:

Microsoft® .NET Micro Frame 4.0

Summary:
This white paper discusses the differences that were made to the COM port’s Classes in
the .NET Micro Framework 4.0 release. Changes were made to the COM port API in
.NET Micro Framework 4.0 to bring the managed code programming experience more in
line with the bigger Windows® .NET Framework. These changes require some
modifications to the references required and the using declarations in the source
modules.

Contents
Introduction
COM Port References
COM Port Using directives
Using the API’s
Conclusion

Introduction
One of the design goals of the .NET Micro Framework was to provide a subset of .NET
Framework API’s that would allow managed code application that were written for the
Windows desktop to be easily port to the .NET Micro Framework environment with
minimal modification of the code. In order to bring the .NET Micro Framework COM port
programming experience more in line with .NET Framework, there were modifications
made to the COM port API’s in the .NET Micro Framework 4.0 Release. These
modifications are clarified in the following topics.

COM Port References
The COM Port interface is now contained in a new assembly,
Microsoft.SPOT.Hardware.SerialPort, which must be added to your managed code
solution in Visual Studio or Visual Studio Express.

SJJ Embedded Micro Solutions Rev 1.2

Copyright © 2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
04/14/10 2

COM Port Using directives
The namespace for the COM port API’s has also changed and the naming conventions
between the assembly and the namespace may be confusing. The old COM port
namespace was Microsoft.SPOT.Hardware. The new COM port namespace is
System.IO.Ports. To easily access the COM port API’s add the “using System.IO.Ports”
statement to the top or your source module:

Using the New Classes
The serial configuration class is no longer used, so if you are porting over a managed
code application from an earlier version of the .NET Micro Framework, comment or
delete those statements. Here is the old serial object creation:

static SerialPort.Configuration mySerial2Config = new
SerialPort.Configuration(SerialPort.Serial.COM2, SerialPort.BaudRate.Baud115200,
false);

SJJ Embedded Micro Solutions Rev 1.2

Copyright © 2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
04/14/10 3

public SerialPort mySerial2 = new SerialPort(mySerial2Config);

The SerialPort class itself now has overloaded constructors that accept the configuration
arguments directly. You must at least specify the COM port that you are referencing,
but baud rate, parity, data bits, and stop bits can be omitted and the overloaded
versions of the class with assign default values. Check with the manufacturer of the
specific .NET Micro Framework port that you are using for the default values that you
can expect.

Here are some examples of using the new SerialPort class and overloaded constructors:

SerialPort mySerialPort = new SerialPort("COM2");

SerialPort mySerialPort = new SerialPort("COM2", BaudRate.Baudrate115200;

SerialPort mySerialPort = new SerialPort("COM2", BaudRate.Baudrate115200,
Parity.None, 8, StopBits.None);

There are defined parameters for the allowed baud rates, the parity values, and the stop
bits. The hardware manufacturer may also provide some replacement definitions that
are specific to the hardware and the .NET Micro Framework port that you are using.
Note that the integer values for the baud rate, parity, etc, can always be used as long as
they are a supported value. The serial port identifier is now the string that names the
serial port, i.e. "COM1", "COM2", etc. Again, check with your manufacturer for the
number of COM ports that are supported on your hardware platform.

The handshake mode cannot be set up in the constructor. You can specify the
handshake mode via SerialPort Handshake property:

mySerialPort.Handshake = Handshake.None;

Before writing to or reading from the serial port, it now must be explicitly opened:

mySerialPort.Open();

The Write & Read method now has 3 parameters: pointer to the byte buffer, the offset
into the buffer to start at, and the number of bytes to write or read, i.e.:

mySerialPort.Write(WriteBuffer, 0, 4);
mySerialPort.Read(ReadBuffer, 0, ReadBuffer.Length);

SJJ Embedded Micro Solutions Rev 1.2

Copyright © 2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
04/14/10 4

When you are through with the serial port, do an explicit close:

mySerialPort.Close();

Conclusion
SerialPort objects can be created and used in the .NET Micro Framework in much the
same way that they are created in used in Window® .NET Framework, once the right
assembly is added to the Visual Studio solution and the appropriate using directive is
added to the code. The SerialPort class constructor provides initialization of most of the
key serial port parameters, and once created, the class provides methods to open, read,
write, and close.

