

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Azure RTOS and the MXCHIP IoT DevKit
By Sean D. Liming and John R. Malin
Annabooks – www.annabooks.com

May 2023

There are a number of Azure RTOS online guides to get started with different platforms. The
MXCHIP IoT DevKit was one of the first platforms that demonstrated connecting to Azure IoT
Central. If you follow the quick start online documents, you will be able to build the example
application from the command line and get it to run. If you want to use the example applications as
a basis for the project, having the ability to step through the code with a debugger is going to be
important. In this paper, we will walk through the example but set up the development environment
to use Visual Studio Code.

MXCHIP manufactures ARM Core + Wi-Fi modules that are small and fit tightly resource-
constrained applications. The MXCHIP IoT DevKit is an example platform demonstrating cloud
connectivity. The board documentation is light and gets a little confusing. The actual target ARM
core on the board is from ST Microelectronics: STM32F412 - Arm® Cortex®-M4, which is built into
the MXCHIP module, but the documentation calls out STM32F103CBT6 - Arm® Cortex®-M3,
which is for the STLINK on-chip debugger. Please be aware that there are some little discrepancies
like this in this demonstration platform.

1.1 Tools Setup

For this setup will we need to download and install a few items.

1. Download and install Visual Studio Code: https://code.visualstudio.com/Download .
2. Once Visual Studio Code has been installed, install the following add-ons from the Visual

Studio Code marketplace:

• C/C++ - Visual Studio Marketplace

• CMake Tools - Visual Studio Marketplace

• CMake - Visual Studio Marketplace

• Cortex-Debug - Visual Studio Marketplace

3. Install Git for downloading the Azure RTOS to get started building files: Git - Downloads
(git-scm.com).

a. Accept the license, and click Next.
b. Leave the install location as is, and click Next.
c. Leave the Selected Components as they are, and click Next.
d. Keep the State Menu Folder as is, and click Next.
e. Set the default editor selection to be “Use Visual Studio Code as Git’s default

editor”, and click Next.

http://www.annabooks.com/
https://docs.microsoft.com/en-us/azure/iot-develop/quickstart-devkit-mxchip-az3166?WT.mc_id=IoT-MVP-5489
https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools
https://marketplace.visualstudio.com/items?itemName=twxs.cmake
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://git-scm.com/downloads
https://git-scm.com/downloads

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

f. Keep the default for initial branches, and click Next.
g. Keep the default PATH Environment, and click Next.
h. Keep the default OpenSSH selection, and click Next.
i. Select “Use Windows’ default console window”, and click Next.

j. Keep the defaults for the next question, and click Next.
k. Keep the defaults for the next question, and click Next.
l. Keep the defaults for the next question, and click Next.
m. Keep the defaults for the extra options, and click Next.
n. Keep the defaults for the experimental options, and click Install.
o. Click Finish once the install completes.

4. Download and install the STM32 Cube Programmer from ST Microelectronics:

STM32CubeProg.

5. Download and install the ARM GNU Toolchain: https://developer.arm.com/-
/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-
win32.exe

Note: Per the description page: Arm GNU Toolchain, this version of the toolchain has been
deprecated. The newer tools are found here: GNU Arm Embedded Toolchain Downloads, but these
tools will not work with the example software.

https://www.st.com/en/development-tools/stm32cubeprog.html
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads
https://developer.arm.com/downloads/-/gnu-rm

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

6. Download and install ABCOMTERM from Annabooks.com. This will be the terminal

program to see the standard output from the devices.
7. Download the latest OpenOCD for Windows (gnutoolchains.com).
8. 7zip will be needed to extract the files.
9. Open Control Panel->System->Advanced system settings
10. Click on the Environment variables button, and edit the Path under System variables, to

add the fully qualified path to the OpenOCD \bin folder.
11. Reboot the computer.

1.2 Download the Getting Started Files from GitHub

Now we need to get the getting started repository that contains the Azure RTOS build example and
the ports to the MXCHIP IoT DevKit and other development kits.

1. Create a directory called \Azure-RTOS_MXCHIP
2. Open PowerShell
3. Change the directory to the newly created folder:

cd \Azure-RTOS_MXCHIP

4. Run the following

git clone --recursive https://github.com/azure-rtos/getting-started.git

1.3 Create Azure IoT Central Application

Now we need to set up the application on Azure IoT Central.

1. In a browser, open https://apps.azureiotcentral.com/home
2. Sign into the account or create an account
3. Click on Build App
4. In the Custom app tile, click Create app.

Application Name: MXCHIP-getting-started.
Pricing Plan: Free.

5. Click Create.

https://gnutoolchains.com/arm-eabi/openocd/
https://apps.azureiotcentral.com/home

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

6. Now, we need to add a device to the application. Click on the +New button that is above
the All Devices section.

7. Enter the following:
a. Device Name: myMXCHIP
b. Device ID mymxchip

8. Click Create.

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

9. The device will be created and listed under all devices

10. Click on myMXCHIP. This will be the view of the data coming in.
11. Click on Connect at the top of the bar

12. A Device Connections group box appears. Copy the following information and paste it into
a Notepad or Notepad++ document for future use:

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

• ID scope

• Device ID

• Primary Key

13. Save the Notepad or Notepad++ document to be used later.
14. Close the dialog when finished.

1.4 Building the Sample App

With the application created in Azure IoT Central and the device information collected to make the
connection, we are ready to build the example.

1. In \Azure-RTOS-MXCHIP\getting-started\MXChip\AZ3166, double-click on AZ3166.code-
workspace. This will open Visual Studio Code.

2. When asked for a toolchain at the top, accept arm-gcc-cortex-m4.
3. Under AZ3166\App, open Azure_config.h and fill in the information gathered from the

Azure IoT Central application, as well as, your Wi-Fi connection settings:

Constant name Value

IOT_DPS_ID_SCOPE ID scope value

IOT_DPS_REGISTRATION_ID Device ID value

IOT_DEVICE_SAS_KEY Primary key value

WIFI_SSID Your Wi-Fi SSID

WIFI_PASSWORD Your Wi-Fi password

WIFI_MODE WEP, WPA_PSK_TKIP, or WPA2_PSK_AES

4. Save the file.
5. At the bottom, click on Build. It will take a few minutes, but the build should complete

successfully

1.5 Program the MXCHIP IoT DevKit Board

With the mxchip_azure_iot.bin build, programming the board is a simple copy and paste.

1. Open File Explorer
2. Navigate to the \Azure-RTOS-MXCHIP\getting-started\MXChip\AZ3166\build\app folder.

The newly created mxchip_azure_iot.bin file should be present.

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

3. Connect the USB cable from the AZ3166 to your development computer.
4. Copy and paste the mxchip_azure_iot.bin into the <drive letter>AZ3166 folder.

Programming starts automatically. The Red LED will be lit and go off when completed.
5. Open a serial terminal program and connect to the AZ3166 COM port, and set the baud

rate to 115200. ABCOMTERM sets the baud rate to 115200 by default.
6. Hit the reset button of the AZ3166.

If all goes well, you will see the terminal output with something similar to the following:

Initializing Wi-Fi
 MAC address: C7:92:46:85:97:FB
SUCCESS: Wi-Fi initialized

Connecting Wi-Fi
 Connecting to SSID 'mywifi'
 Attempt 1...
SUCCESS: Wi-Fi connected

Initializing DHCP
 IP address: 192.168.1.25
 Mask: 255.255.255.0
 Gateway: 192.168.1.1
SUCCESS: DHCP initialized

Initializing DNS client
 DNS address: 192.168.1.1
SUCCESS: DNS client initialized

Initializing SNTP time sync
 SNTP server 0.pool.ntp.org
 SNTP time update: Jul 21, 2022 1:17:46.215 UTC
SUCCESS: SNTP initialized

Initializing Azure IoT DPS client

 DPS endpoint: global.azure-devices-provisioning.net
 DPS ID scope: 0ne006B73CD
 Registration ID: mymxchip
SUCCESS: Azure IoT DPS client initialized

Initializing Azure IoT Hub client
 Hub hostname: iotc-15b8066c-0815-48c5-9117-efc4e092b770.azure-devices.net
 Device id: mymxchip
 Model id: dtmi:azurertos:devkit:gsgmxchip;2

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

SUCCESS: Connected to IoT Hub

Receive properties: {"desired":{"$version":1},"reported":{"$version":1}}
Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=3{"deviceInformation":{"__t":"c","manufact
urer":"MXCHIP","model":"AZ3166","swVersion":"1.0.0","osName":"Azure
RTOS","processorArchitecture":"Arm Cortex
M4","processorManufacturer":"STMicroelectronics","totalStorage":1024,"totalMemory":128}
}
Sending property: $iothub/twin/PATCH/properties/reported/?$rid=5{"ledState":false}
Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=7{"telemetryInterval":{"ac":200,"av":1,"va
lue":10}}

Starting Main loop
Telemetry message sent: {"humidity":46.7,"temperature":27.62,"pressure":998.29}.
Telemetry message sent: {"magnetometerX":-162,"magnetometerY":360,"magnetometerZ":-
207}.
Telemetry message sent: {"accelerometerX":-2.8,"accelerometerY":-
972.64,"accelerometerZ":285.66}.

“Azure IoT” will appear on the little screen, and in the browser refresh the screen to see the
myMXCHIP device data.

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

1.6 Debugging the application

Now, we will step through the code to see how it works.

1. In Visual Studio Code, hit F5.
2. The binary will be downloaded and a breakpoint will be hit within main.c.

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

3. Click Step Over (F10) to move past the board initialization call.
4. Click Step Over (F10) and the application thread will kick off and run.
5. Stop the debugger (Shift+F5).

The files comprise the core functionality of the application are:

• main.c – sets up and runs the thread.

• nx_client.c – creates the callback function to send telemetry and handle receive
commands.

• Azure_iot_nx_client.c – this file has the main loop client_run(), which connects to Azure
IoT Central and handles communications between the local application and the application
on Azure IoT Central.

6. In main.c, set a breakpoint at line 40, which is the call to azure_iot_nx_client_entry.
7. In nx_client.c, set a breakpoint at line 374, which is within the call to

azure_iot_nx_client_entry.
8. Also, in nx_client.c, set another breakpoint at line 260, which is the screen_printn call to

handle the command to print the text to the screen.
9. In Azure_iot_nx_client.c, set a breakpoint at line 1116, which is in client_run().
10. Hit F5.
11. When the breakpoint hits in Main.c, hit F10 twice.
12. The debugger will break at line 40, Hit F11 to step into the to azure_iot_nx_client_entry

call.
13. The debugger opens nx_client.c and hits the breakpoint at line 374.
14. Continue to hit F10, but at Line 414, hit F11 to step into azure_iot_nx_client_dps_run.
15. Continue to hit F10, and at line 1199 at the return, hit F11.
16. The debugger is now in the main loop in Azure_iot_nx_client.c. In Azure IoT Central, click

on Command, type “Hello” in the Display Text, and click Run.

Rev 1.6

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17. Go back and continue to hit F10, eventually, you should hit the breakpoint at line 260 in
nx_client.c.

18. Hit F5 to continue debugging and the display should show the message.
19. Hit Shift+F5 to stop debugging.

1.7 Conclusion

Sample projects are good starting points to get familiar with the software. The ability to step through
the code and see the API calls in operation provides good insight when documentation is lacking.
The paper here covered debugging with Visual Studio Code.

References

More information on the Azure IoT SDKs can be found here.

MXCHIP Website: https://www.mxchip.com

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks?WT.mc_id=IoT-MVP-5489
https://www.mxchip.com/

