Ainnabagks- Rev 1.6

Azure RTOS and the MXCHIP loT DevKit

By Sean D. Liming and John R. Malin
Annabooks — www.annabooks.com

May 2023

There are a number of Azure RTOS online guides to get started with different platforms. The
MXCHIP IoT DevKit was one of the first platforms that demonstrated connecting to Azure IoT
Central. If you follow the quick start online documents, you will be able to build the example
application from the command line and get it to run. If you want to use the example applications as
a basis for the project, having the ability to step through the code with a debugger is going to be
important. In this paper, we will walk through the example but set up the development environment
to use Visual Studio Code.

MXCHIP manufactures ARM Core + Wi-Fi modules that are small and fit tightly resource-
constrained applications. The MXCHIP loT DevKit is an example platform demonstrating cloud
connectivity. The board documentation is light and gets a little confusing. The actual target ARM
core on the board is from ST Microelectronics: STM32F412 - Arm® Cortex®-M4, which is built into
the MXCHIP module, but the documentation calls out STM32F103CBT6 - Arm® Cortex®-M3,
which is for the STLINK on-chip debugger. Please be aware that there are some little discrepancies
like this in this demonstration platform.

1.1 Tools Setup

For this setup will we need to download and install a few items.

—_

Download and install Visual Studio Code: https://code.visualstudio.com/Download .
2. Once Visual Studio Code has been installed, install the following add-ons from the Visual
Studio Code marketplace:

C/C++ - Visual Studio Marketplace
CMake Tools - Visual Studio Marketplace
CMake - Visual Studio Marketplace
Cortex-Debug - Visual Studio Marketplace

3. Install Git for downloading the Azure RTOS to get started building files: Git - Downloads
(git-scm.com).

Accept the license, and click Next.

Leave the install location as is, and click Next.

Leave the Selected Components as they are, and click Next.

Keep the State Menu Folder as is, and click Next.

Set the default editor selection to be “Use Visual Studio Code as Git's default

editor”, and click Next.

P00 TO

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

http://www.annabooks.com/
https://docs.microsoft.com/en-us/azure/iot-develop/quickstart-devkit-mxchip-az3166?WT.mc_id=IoT-MVP-5489
https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools
https://marketplace.visualstudio.com/items?itemName=twxs.cmake
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://git-scm.com/downloads
https://git-scm.com/downloads

JAinnahooks: Rev 1.6

4 Git2.37.1 Setup

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Visual Studio Code as Git's default editor ~

Visual Studio Code is an Open Source, lightweight and powerful editor

running as a desktop application. It comes with built-in support for JavaScript,
TypeScript and Mode. js and has a rich ecosystem of extensions for other
languages (such as C++, C#, Java, Python, PHP, Go) and runtimes (such as
.NET and Unity).

(WARNING!) This will be installed only for this user.

Use this option to let Git use Visual Studio Code as its default editor,

Keep the default for initial branches, and click Next.

Keep the default PATH Environment, and click Next.

Keep the default OpenSSH selection, and click Next.

Select “Use Windows’ default console window”, and click Next.

Q-

&) Git 2.37.1 Setup

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(_) Use MinTTY (the default terminal of M5YS2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-ectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty ™ to work in MinTTY.

(®) Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe™), which works well
with Win32 console programs such as interactive Python or node. js, but has a
wvery limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

[Jonly show new options Back Cancel

Keep the defaults for the next question, and click Next.

Keep the defaults for the next question, and click Next.

Keep the defaults for the next question, and click Next.

Keep the defaults for the extra options, and click Next.

Keep the defaults for the experimental options, and click Install.
Click Finish once the install completes.

o353~ xT

4. Download and install the STM32 Cube Programmer from ST Microelectronics:
STM32CubeProg.

5. Download and install the ARM GNU Toolchain: https://developer.arm.com/-
/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-
win32.exe

Note: Per the description page: Arm GNU Toolchain, this version of the toolchain has been
deprecated. The newer tools are found here: GNU Arm Embedded Toolchain Downloads, but these
tools will not work with the example software.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://www.st.com/en/development-tools/stm32cubeprog.html
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads
https://developer.arm.com/downloads/-/gnu-rm

Ainnabagks- Rev 1.6

o

S©oN

Download and install ABCOMTERM from Annabooks.com. This will be the terminal
program to see the standard output from the devices.

Download the latest OpenOCD for Windows (gnutoolchains.com).

7zip will be needed to extract the files.

Open Control Panel->System->Advanced system settings

. Click on the Environment variables button, and edit the Path under System variables, to

add the fully qualified path to the OpenOCD \bin folder.

. Reboot the computer.

1.2 Download the Getting Started Files from GitHub

Now we need to get the getting started repository that contains the Azure RTOS build example and
the ports to the MXCHIP IoT DevKit and other development Kits.

1.
2.
3

Create a directory called \Azure-RTOS_MXCHIP
Open PowerShell

Change the directory to the newly created folder:
cd \Azure-RTOS_MXCHIP

Run the following

git clone --recursive https://github.com/azure-rtos/getting-started.git

1.3 Create Azure loT Central Application

Now we need to set up the application on Azure loT Central.

PON =

In a browser, open https://apps.azureiotcentral.com/home
Sign into the account or create an account

Click on Build App

In the Custom app tile, click Create app.

Application Name: MXCHIP-getting-started.
Pricing Plan: Free.

Click Create.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://gnutoolchains.com/arm-eabi/openocd/
https://apps.azureiotcentral.com/home

JAinnahooks: Rev 16

Build > New application

@ Home New application Custom
I . Build Answer a few quick questions and we'll get your app up and running.
R Myapps About your app

Application name * (1)

‘ MXCHIP-getting-started

URL* ®

‘ mxchip-getting-started .azureiotcentral.com

Application template * ()

‘ Custom application v

Pricing plan
@ Free
Try for 7 days with no commitment

5 free devices

() Standard 0
For devices sending a few messages per day

2 free devices 400 messages/mo

() Standard 1
For devices sending a few messages per hour

2 free devices 5,000 messages/mo

O Standard 2 {most popular)
For devices sending messages every few minutes

2 free devices 30,000 messages/mo

By clicking "Create" you agree to the Subscription Agreement = and Privacy Statement =,
Provisions in the agreement with respect to pricing, cancellation fees, payment, and data
retention do not apply to "Free". "Standard” plans require an Azure subscription, and you
acknowledge that this service is licensed to you under the terms applicable to your Azure

Subscription =7,

6. Now, we need to add a device to the application. Click on the +New button that is above
the All Devices section.
7. Enter the following:
a. Device Name: myMXCHIP
b. Device ID mymxchip
8. Click Create.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks Rev 16

Create a new device X

To create a new device, select a device template, a name, and a unigue ID. Learn more =

Device name * (i)

myMXCHIP

Device ID * (0)

mymxchip

Device template *

Unassigned

Simulate this device?

A simulated device generates telemetry that enables you to test the behavior of your application
before you connect a real device.

(®) No

9. The device will be created and listed under all devices

Devices < - New EEBILEE m v Q
Filter templates | .
~ All devices
All devices =) Device explorer helps you see all your devices. Detailed information like device raw data helps you troubleshoot.
Learn more =
Device name Device ID Device status Device template
myMXCHIP mymxchip Registered Unassigned

10. Click on myMXCHIP. This will be the view of the data coming in.
11. Click on Connect at the top of the bar

Manage template (& Manage device O #BH B Y

Devices > myMXCHIP

myMXCHIP

| Last data received: NfA | Status: Registered | Organization: MXCHIP-getting-started

Raw data Mapped zliases

Timestamp | Message type Event creation time Unmodeled data

No rows found

12. A Device Connections group box appears. Copy the following information and paste it into
a Notepad or Notepad++ document for future use:

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabooks-

Rev 1.6

e ID scope
e Device ID
e Primary Key

13. Save the Notepad or Notepad++ document to be used later.
14. Close the dialog when finished.

1.4 Building the Sample App

With the
connecti

application created in Azure loT Central and the device information collected to make the
on, we are ready to build the example.

1. In\Azure-RTOS-MXCHIP\getting-started\MXChip\AZ3166, double-click on AZ3166.code-
workspace. This will open Visual Studio Code.

2. When asked for a toolchain at the top, accept arm-gcc-cortex-m4.

3. Under AZ3166\App, open Azure_config.h and fill in the information gathered from the
Azure loT Central application, as well as, your Wi-Fi connection settings:

Constant name Value
IOT_DPS ID SCOPE ID scope value
IOT DPS REGISTRATION ID Device ID value
IOT _DEVICE SAS KEY Primary key value
WIFI_SSID Your Wi-Fi SSID
WIFI PASSWORD Your Wi-Fi password
WIFI_MODE WEP, WPA_PSK_TKIP, or WPA2 PSK_AES
4. Save the file.

5. At the bottom, click on Build. It will take a few minutes, but the build should complete

[build]
[build]
[build]
[build]
[build]
[build]
[build]
[build]
[build]

successfully

QUTPUT DEBUG COMSOLE ERMIMAL

[12@1/1285] Linking C static library lib\netxduo\addons\azure_iot\azure_iot_security module‘\iot-security-modul:
[1202/1205] Linking C static library lib\netxduo\addons‘\azure_iot\azure_iot_security_module\libiot_security_mo:
[1283/1265] Linking C static library lib\netxduo\libnetxduo.a
[1284/12085] Linking C exscutable app\mxchip_azure_iot.elf
Memory region Used Size Region Size Xage Used
RAM: 119328 B 128 KB 91.04%

FLASH: 625524 B 1 MB 59.65%

CCMRAM: @ GB 64 KB .ok
[1285/1265] cmd.exe /C "cd /D E:\Azure-RTOS-MXCHIP‘\getting-started\MXChip\AZ3166%\build\app && "C:\Program File:

-Obinary mxchip_azure_iot.elf mxchip_azure_iot.bin && "C:\Program Files (x86)%GNU Arm Embedded Toolchain\1@ 2821.1@\bii

[build]

Build finished with exit code @

Build 3 [arm-gcc-cortex-md] [[Targets InPreset]] &[> 3 No Test Preset Selected

1.5 Program the MXCHIP IoT DevKit Board
With the mxchip_azure_iot.bin build, programming the board is a simple copy and paste.

1.
2.

Copyright
Windows is
All other co

Open File Explorer
Navigate to the \Azure-RTOS-MXCHIP\getting-started\MXChip\AZ3166\build\app folder.
The newly created mxchip_azure_iot.bin file should be present.

© 2023 Annabooks, LLC. All rights reserved
registered trademarks of Microsoft Corporation
pyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabooks-

Rev 1.6

Azure-RTOS-MECHIP » getting-started » MXChip »

Mame

CMakeFiles

cmake_install.cmake
|| mxchip_azure_iot.bin
|| mxchip_azure_iot.elf

|| mxchip_azure_iot.hex

3. Connect the USB cable from the AZ3166 to your development computer.
4. Copy and paste the mxchip_azure iot.bin

Date modified

72172022 2:47 PM
7/26/2022 T:45 PM
7/26/2022 T7:45 PM
7/26/2022 T:45 PM

into the <drive

AZ3166 » build > app

Type

File folder

CMake Source File
BIM File

ELF File

HEX File

Size

2 KB
611 KB
6,832 KB
1,719 KB

letter>AZ3166 folder.

Programming starts automatically. The Red LED will be lit and go off when completed.
5. Open a serial terminal program and connect to the AZ3166 COM port, and set the baud
rate to 115200. ABCOMTERM sets the baud rate to 115200 by default.

6. Hit the reset button of the AZ3166.

If all goes well, you will see the terminal output with something similar to the following:

Initializing Wi-Fi

MAC address: C7:92:46:85:97:FB

SUCCESS: Wi-Fi initialized

Connecting Wi-Fi

Connecting to SSID 'mywifi'

Attempt 1...
SUCCESS: Wi-Fi connected

Initializing DHCP
IP address: 192.168.1.25
Mask: 255.255.255.0
Gateway: 192.168.1.1
SUCCESS: DHCP initialized

Initializing DNS client
DNS address: 192.168.1.1
SUCCESS: DNS client initialized

Initializing SNTP time sync

SNTP server 0.pool.ntp.org
SNTP time update: Jul 21, 2022 1:17:46.215 UTC

SUCCESS: SNTP initialized

Initializing Azure IoT DPS client

DPS endpoint: global.azure-devices-provisioning.net

DPS ID scope: ©ne@06B73CD
Registration ID: mymxchip

SUCCESS: Azure IoT DPS client initialized

Initializing Azure IoT Hub client

Hub hostname: iotc-15b8066c-0815-48c5-9117-efc4e092b770.azure-devices.net

Device id: mymxchip

Model id: dtmi:azurertos:devkit:gsgmxchip;2

Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is registered trademarks of Microsoft Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Ainnabagks- Rev 1.6

SUCCESS: Connected to IoT Hub

Receive properties: {"desired":{"$version":1},"reported”:{"$version":1}}

Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=3{"deviceInformation”:{"__t":"c", "manufact
urer":"MXCHIP","model":"AZ3166", "swVersion":"1.0.0","osName": "Azure

RTOS", "processorArchitecture":"Arm Cortex

M4" ,"processorManufacturer":"STMicroelectronics"”,"totalStorage":1024,"totalMemory":128}
}

Sending property: $iothub/twin/PATCH/properties/reported/?$rid=5{"1ledState":false}
Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=7{"telemetryInterval”:{"ac":200,"av":1,"va
lue":10}}

Starting Main loop

Telemetry message sent: {"humidity":46.7,"temperature":27.62,"pressure":998.29}.
Telemetry message sent: {"magnetometerX":-162,"magnetometerY":360, "magnetometerz":-
207%}.

Telemetry message sent: {"accelerometerX":-2.8,"accelerometerY":-
972.64,"accelerometerzZ":285.66}.

“Azure loT” will appear on the little screen, and in the browser refresh the screen to see the
myMXCHIP device data.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabgsoks-

Rev 1.6

& Connect &, Manage template ~ (& Manage device

Devices » MXCHIP Getting Started Guide > myMXCHIP

= myMXCHIP
@ Connected | Last data received: 7/20/2022, 6:30:55 PM | Status: Provisioned | Organization: MXCHIP-getting-started
About Overview Commands Rawdata Mapped aliases

Temperature, Humidity, Pressure, Gyroscope X

® Temperature ® Humidity ® Pressure

[(3

? —
2] T
] N

Gyroscaps X

06:02 PM
07/20/2022

T
06:33 PM
071202022

Temperature Ve

28.42

Average, Past 12 hours

Pressure e

998.28

Average, Past 12 hours

Magnetometer X /... ./ Magnetometer Y /... ./ Magr

36030 °

-1554

-158.78

X / mgauss,

@ Magnetometer X..

® Magnstometer V...

Humidity s

45.27

Average, Past 12 hours

Gyroscope X 7

-11.05

Average, Past 12 hours

Y / mgauss, Magnetometer ... e

® Magnatometer Z...

Lbe

Average, Past 12 hours Average, Past 12 hours
-160+
Magnetometer Z / mgauss v 380
380+
-197.18
-200+
T
Average, Past 12 hours ey

Ac X, Acc Y, Acc z

® Accelerometer X ® Accelerometer ¥ ® Accelerometer 7

2| S
] AN

(g

9726

077

1.6 Debugging the application

Now, we will step through the code to see how it works.

1. In Visual Studio Code, hit F5.

Accelerometer X 7

-2.71

Average, Past 12 hours

Accelerometer Z

T
06:33 PM
071202022

Accelerometer Y 7

-972.63

Average, Past 12 hours

2. The binary will be downloaded and a breakpoint will be hit within main.c.

Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is registered trademarks of Microsoft Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Ainnabagks- Rev 1.6

C main.c % > < + T O 0O~
AZ3166 > app > € main.c >) main(void)

49 systick_interval set(TX_TIMER_TICKS_PER_SECOND);

5e

51 /{ Create Azure thread

52 UINT status = tx_thread_create(&azure_thread,

53 "Azure Thread",

54 azure_thread_entry,

55 a,

56 azure_thread_stack,

57 AZURE_THREAD_STACK_SIZE,

58 AZURE_THREAD_PRIORITY,

59 AZURE_THREAD_PRIORITY,

66 TX_NO_TIME_SLICE,

61 TX_AUTO_START);

62

63 if (status != TX_SUCCESS)

64

65 printf("ERROR: Azure IoT thread creation failed\rin");

AA

67 1

68

69 int main(void)

70 I

71 // Initialize the board

> 72 | board_init();

73

74 // Enter the ThreadX kernel

75 tx_kernel_enter();

76

77 return @;

78 |}

79
3. Click Step Over (F10) to move past the board initialization call.
4. Click Step Over (F10) and the application thread will kick off and run.
5. Stop the debugger (Shift+F5).

The files comprise the core functionality of the application are:

No

10.
11.
12.

13.
14.
15.
16.

main.c — sets up and runs the thread.

nx_client.c — creates the callback function to send telemetry and handle receive
commands.

Azure_iot_nx_client.c — this file has the main loop client_run(), which connects to Azure
IoT Central and handles communications between the local application and the application
on Azure loT Central.

In main.c, set a breakpoint at line 40, which is the call to azure_iot_nx_client_entry.

In nx_client.c, set a breakpoint at line 374, which is within the «call to
azure_iot_nx_client_entry.

Also, in nx_client.c, set another breakpoint at line 260, which is the screen_printn call to
handle the command to print the text to the screen.

In Azure_iot_nx_client.c, set a breakpoint at line 1116, which is in client_run().

Hit F5.

When the breakpoint hits in Main.c, hit F10 twice.

The debugger will break at line 40, Hit F11 to step into the to azure_iot_nx_client_entry
call.

The debugger opens nx_client.c and hits the breakpoint at line 374.

Continue to hit F10, but at Line 414, hit F11 to step into azure_iot_nx_client_dps_run.
Continue to hit F10, and at line 1199 at the return, hit F11.

The debugger is now in the main loop in Azure_iot_nx_client.c. In Azure loT Central, click
on Command, type “Hello” in the Display Text, and click Run.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

JAinnahooks: Rev 1.6

Connect B, Managetemplate ~ @ Manage device

Devices » MXCHIP Getting Started Guide » myMXCHIP

— myMXCHIP

=
© Connected | Last data received: 7/26/2022, 9:29:22 PM | Status: Provisi

About Owverview Commands Raw data Mapped aliases

MXCHIP Getting Started Guide / Set LED state (0

State @

Select a value

To sec response, please check the command history.

MXCHIP Getting Started Guide / Display Text (O

Text @
Hello|

To see response, please check the command history.

17. Go back and continue to hit F10, eventually, you should hit the breakpoint at line 260 in
nx_client.c.

18. Hit F5 to continue debugging and the display should show the message.

19. Hit Shift+F5 to stop debugging.

1.7 Conclusion

Sample projects are good starting points to get familiar with the software. The ability to step through
the code and see the API calls in operation provides good insight when documentation is lacking.
The paper here covered debugging with Visual Studio Code.

References

More information on the Azure loT SDKs can be found here.

MXCHIP Website: https://www.mxchip.com

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks?WT.mc_id=IoT-MVP-5489
https://www.mxchip.com/

